Problem #1072

1072.

A clock chimes once at $30$ minutes past each hour and chimes on the hour according to the hour. For example, at $1 \text{PM}$ there is one chime and at noon and midnight there are twelve chimes. Starting at $11:15 \text{AM}$ on $\text{February 26, 2003},$ on what date will the $2003\text{rd}$ chime occur?

$\textbf{(A) } \text{March 8} \qquad\textbf{(B) } \text{March 9} \qquad\textbf{(C) } \text{March 10} \qquad\textbf{(D) } \text{March 20} \qquad\textbf{(E) } \text{March 21}$

This problem is copyrighted by the American Mathematics Competitions.

Note: you aren't logged in. If you log in, we'll keep a record of which problems you've solved.

Instructions for entering answers:

  • Reduce fractions to lowest terms and enter in the form 7/9.
  • Numbers involving pi should be written as 7pi or 7pi/3 as appropriate.
  • Square roots should be written as sqrt(3), 5sqrt(5), sqrt(3)/2, or 7sqrt(2)/3 as appropriate.
  • Exponents should be entered in the form 10^10.
  • If the problem is multiple choice, enter the appropriate (capital) letter.
  • Enter points with parentheses, like so: (4,5)
  • Complex numbers should be entered in rectangular form unless otherwise specified, like so: 3+4i. If there is no real component, enter only the imaginary component (i.e. 2i, NOT 0+2i).

For questions or comments, please email markan@eudelic.com.

Registration open for AMC10/12 prep class

Registration is now open. See details here.