Problem #1130


Two eight-sided dice each have faces numbered $1$ through $8$. When the dice are rolled, each face has an equal probability of appearing on the top. What is the probability that the product of the two top numbers is greater than their sum?

$\mathrm{(A) \ } \frac{1}{2} \qquad \mathrm{(B) \ } \frac{47}{64} \qquad \mathrm{(C) \ } \frac{3}{4} \qquad \mathrm{(D) \ } \frac{55}{64} \qquad \mathrm{(E) \ } \frac{7}{8}$

This problem is copyrighted by the American Mathematics Competitions.

Note: you aren't logged in. If you log in, we'll keep a record of which problems you've solved.

Instructions for entering answers:

  • Reduce fractions to lowest terms and enter in the form 7/9.
  • Numbers involving pi should be written as 7pi or 7pi/3 as appropriate.
  • Square roots should be written as sqrt(3), 5sqrt(5), sqrt(3)/2, or 7sqrt(2)/3 as appropriate.
  • Exponents should be entered in the form 10^10.
  • If the problem is multiple choice, enter the appropriate (capital) letter.
  • Enter points with parentheses, like so: (4,5)
  • Complex numbers should be entered in rectangular form unless otherwise specified, like so: 3+4i. If there is no real component, enter only the imaginary component (i.e. 2i, NOT 0+2i).

For questions or comments, please email

Registration open for 2018 AIME prep class

Registration is now open. See details here.

$25 discount if you register by December 28!