Problem #1169


Suppose that $4^{x_1}=5$, $5^{x_2}=6$, $6^{x_3}=7$, ... , $127^{x_{124}}=128$. What is $x_1x_2...x_{124}$?

$\mathrm{(A)}\ {{{2}}} \qquad \mathrm{(B)}\ {{{\frac{5}{2}}}} \qquad \mathrm{(C)}\ {{{3}}} \qquad \mathrm{(D)}\ {{{\frac{7}{2}}}} \qquad \mathrm{(E)}\ {{{4}}}$

This problem is copyrighted by the American Mathematics Competitions.

Note: you aren't logged in. If you log in, we'll keep a record of which problems you've solved.

Instructions for entering answers:

  • Reduce fractions to lowest terms and enter in the form 7/9.
  • Numbers involving pi should be written as 7pi or 7pi/3 as appropriate.
  • Square roots should be written as sqrt(3), 5sqrt(5), sqrt(3)/2, or 7sqrt(2)/3 as appropriate.
  • Exponents should be entered in the form 10^10.
  • If the problem is multiple choice, enter the appropriate (capital) letter.
  • Enter points with parentheses, like so: (4,5)
  • Complex numbers should be entered in rectangular form unless otherwise specified, like so: 3+4i. If there is no real component, enter only the imaginary component (i.e. 2i, NOT 0+2i).

For questions or comments, please email