Problem #1332


Two particles move along the edges of equilateral $\triangle ABC$ in the direction \[A\Rightarrow B\Rightarrow C\Rightarrow A,\] starting simultaneously and moving at the same speed. One starts at $A$, and the other starts at the midpoint of $\overline{BC}$. The midpoint of the line segment joining the two particles traces out a path that encloses a region $R$. What is the ratio of the area of $R$ to the area of $\triangle ABC$?

$\mathrm {(A)} \frac{1}{16}\qquad \mathrm {(B)} \frac{1}{12}\qquad \mathrm {(C)} \frac{1}{9}\qquad \mathrm {(D)} \frac{1}{6}\qquad \mathrm {(E)} \frac{1}{4}$

This problem is copyrighted by the American Mathematics Competitions.

Note: you aren't logged in. If you log in, we'll keep a record of which problems you've solved.

Instructions for entering answers:

  • Reduce fractions to lowest terms and enter in the form 7/9.
  • Numbers involving pi should be written as 7pi or 7pi/3 as appropriate.
  • Square roots should be written as sqrt(3), 5sqrt(5), sqrt(3)/2, or 7sqrt(2)/3 as appropriate.
  • Exponents should be entered in the form 10^10.
  • If the problem is multiple choice, enter the appropriate (capital) letter.
  • Enter points with parentheses, like so: (4,5)
  • Complex numbers should be entered in rectangular form unless otherwise specified, like so: 3+4i. If there is no real component, enter only the imaginary component (i.e. 2i, NOT 0+2i).

For questions or comments, please email