Problem #1394


A semipro baseball league has teams with $21$ players each. League rules state that a player must be paid at least $15,000$ dollars, and that the total of all players' salaries for each team cannot exceed $700,000$ dollars. What is the maximum possible salary, in dollars, for a single player?

$\textbf{(A)}\ 270,000 \qquad \textbf{(B)}\ 385,000 \qquad \textbf{(C)}\ 400,000 \qquad \textbf{(D)}\ 430,000 \qquad \textbf{(E)}\ 700,000$

This problem is copyrighted by the American Mathematics Competitions.

Note: you aren't logged in. If you log in, we'll keep a record of which problems you've solved.

Instructions for entering answers:

  • Reduce fractions to lowest terms and enter in the form 7/9.
  • Numbers involving pi should be written as 7pi or 7pi/3 as appropriate.
  • Square roots should be written as sqrt(3), 5sqrt(5), sqrt(3)/2, or 7sqrt(2)/3 as appropriate.
  • Exponents should be entered in the form 10^10.
  • If the problem is multiple choice, enter the appropriate (capital) letter.
  • Enter points with parentheses, like so: (4,5)
  • Complex numbers should be entered in rectangular form unless otherwise specified, like so: 3+4i. If there is no real component, enter only the imaginary component (i.e. 2i, NOT 0+2i).

For questions or comments, please email