# Problem #1414

 1414 Let $A_0 = (0,0)$. Distinct points $A_1,A_2,\ldots$ lie on the $x$-axis, and distinct points $B_1,B_2,\ldots$ lie on the graph of $y = \sqrt {x}$. For every positive integer $n$, $A_{n - 1}B_nA_n$ is an equilateral triangle. What is the least $n$ for which the length $A_0A_n\ge100$? $\textbf{(A)}\ 13\qquad \textbf{(B)}\ 15\qquad \textbf{(C)}\ 17\qquad \textbf{(D)}\ 19\qquad \textbf{(E)}\ 21$ This problem is copyrighted by the American Mathematics Competitions.
Note: you aren't logged in. If you log in, we'll keep a record of which problems you've solved.

• Reduce fractions to lowest terms and enter in the form 7/9.
• Numbers involving pi should be written as 7pi or 7pi/3 as appropriate.
• Square roots should be written as sqrt(3), 5sqrt(5), sqrt(3)/2, or 7sqrt(2)/3 as appropriate.
• Exponents should be entered in the form 10^10.
• If the problem is multiple choice, enter the appropriate (capital) letter.
• Enter points with parentheses, like so: (4,5)
• Complex numbers should be entered in rectangular form unless otherwise specified, like so: 3+4i. If there is no real component, enter only the imaginary component (i.e. 2i, NOT 0+2i).