# Problem #1610

 1610 Triangle $ABC$ has $\angle BAC = 60^{\circ}$, $\angle CBA \leq 90^{\circ}$, $BC=1$, and $AC \geq AB$. Let $H$, $I$, and $O$ be the orthocenter, incenter, and circumcenter of $\triangle ABC$, respectively. Assume that the area of pentagon $BCOIH$ is the maximum possible. What is $\angle CBA$? $\textbf{(A)}\ 60^{\circ} \qquad \textbf{(B)}\ 72^{\circ} \qquad \textbf{(C)}\ 75^{\circ} \qquad \textbf{(D)}\ 80^{\circ} \qquad \textbf{(E)}\ 90^{\circ}$ This problem is copyrighted by the American Mathematics Competitions.
Note: you aren't logged in. If you log in, we'll keep a record of which problems you've solved.

• Reduce fractions to lowest terms and enter in the form 7/9.
• Numbers involving pi should be written as 7pi or 7pi/3 as appropriate.
• Square roots should be written as sqrt(3), 5sqrt(5), sqrt(3)/2, or 7sqrt(2)/3 as appropriate.
• Exponents should be entered in the form 10^10.
• If the problem is multiple choice, enter the appropriate (capital) letter.
• Enter points with parentheses, like so: (4,5)
• Complex numbers should be entered in rectangular form unless otherwise specified, like so: 3+4i. If there is no real component, enter only the imaginary component (i.e. 2i, NOT 0+2i).