Problem #1689

1689.

A $3\times3$ square is partitioned into $9$ unit squares. Each unit square is painted either white or black with each color being equally likely, chosen independently and at random. The square is the rotated $90^\circ$ clockwise about its center, and every white square in a position formerly occupied by a black square is painted black. The colors of all other squares are left unchanged. What is the probability that the grid is now entirely black?

$\textbf{(A)}\ \dfrac{49}{512} \qquad\textbf{(B)}\ \dfrac{7}{64} \qquad\textbf{(C)}\ \dfrac{121}{1024} \qquad\textbf{(D)}\ \dfrac{81}{512} \qquad\textbf{(E)}\ \dfrac{9}{32}$

This problem is copyrighted by the American Mathematics Competitions.

Note: you aren't logged in. If you log in, we'll keep a record of which problems you've solved.

Instructions for entering answers:

  • Reduce fractions to lowest terms and enter in the form 7/9.
  • Numbers involving pi should be written as 7pi or 7pi/3 as appropriate.
  • Square roots should be written as sqrt(3), 5sqrt(5), sqrt(3)/2, or 7sqrt(2)/3 as appropriate.
  • Exponents should be entered in the form 10^10.
  • If the problem is multiple choice, enter the appropriate (capital) letter.
  • Enter points with parentheses, like so: (4,5)
  • Complex numbers should be entered in rectangular form unless otherwise specified, like so: 3+4i. If there is no real component, enter only the imaginary component (i.e. 2i, NOT 0+2i).

For questions or comments, please email markan@eudelic.com.

Registration open for AMC10/12 prep class

Registration is now open. See details here.