Problem #1767

1767.

Let $S$ be the set $\{1,2,3,...,19\}$. For $a,b \in S$, define $a \succ b$ to mean that either $0 < a - b \le 9$ or $b - a > 9$. How many ordered triples $(x,y,z)$ of elements of $S$ have the property that $x \succ y$, $y \succ z$, and $z \succ x$?

$\textbf{(A)} \ 810 \qquad  \textbf{(B)} \ 855 \qquad  \textbf{(C)} \ 900 \qquad  \textbf{(D)} \ 950 \qquad  \textbf{(E)} \ 988$

This problem is copyrighted by the American Mathematics Competitions.

Note: you aren't logged in. If you log in, we'll keep a record of which problems you've solved.

Instructions for entering answers:

  • Reduce fractions to lowest terms and enter in the form 7/9.
  • Numbers involving pi should be written as 7pi or 7pi/3 as appropriate.
  • Square roots should be written as sqrt(3), 5sqrt(5), sqrt(3)/2, or 7sqrt(2)/3 as appropriate.
  • Exponents should be entered in the form 10^10.
  • If the problem is multiple choice, enter the appropriate (capital) letter.
  • Enter points with parentheses, like so: (4,5)
  • Complex numbers should be entered in rectangular form unless otherwise specified, like so: 3+4i. If there is no real component, enter only the imaginary component (i.e. 2i, NOT 0+2i).

For questions or comments, please email markan@eudelic.com.

Registration open for AMC10/12 prep class

Registration is now open. See details here.