Problem #180

180.

Two skaters, Allie and Billie, are at points $A^{}_{}$ and $B^{}_{}$, respectively, on a flat, frozen lake. The distance between $A^{}_{}$ and $B^{}_{}$ is $100^{}_{}$ meters. Allie leaves $A^{}_{}$ and skates at a speed of $8^{}_{}$ meters per second on a straight line that makes a $60^\circ$ angle with $AB^{}_{}$. At the same time Allie leaves $A^{}_{}$, Billie leaves $B^{}_{}$ at a speed of $7^{}_{}$ meters per second and follows the straight path that produces the earliest possible meeting of the two skaters, given their speeds. How many meters does Allie skate before meeting Billie?

AIME 1989 Problem 6.png

This problem is copyrighted by the American Mathematics Competitions.

Note: you aren't logged in. If you log in, we'll keep a record of which problems you've solved.

Instructions for entering answers:

  • Reduce fractions to lowest terms and enter in the form 7/9.
  • Numbers involving pi should be written as 7pi or 7pi/3 as appropriate.
  • Square roots should be written as sqrt(3), 5sqrt(5), sqrt(3)/2, or 7sqrt(2)/3 as appropriate.
  • Exponents should be entered in the form 10^10.
  • If the problem is multiple choice, enter the appropriate (capital) letter.
  • Enter points with parentheses, like so: (4,5)
  • Complex numbers should be entered in rectangular form unless otherwise specified, like so: 3+4i. If there is no real component, enter only the imaginary component (i.e. 2i, NOT 0+2i).

For questions or comments, please email markan@eudelic.com.

Find out how your skills stack up!

Try our new, free contest math practice test. All new, never-seen-before problems.

AMC/AIME classes

I offer online AMC/AIME classes periodically. Join the mailing list to be informed next time they're offered.

Private coaching is also available.