1922. 
Larry and Julius are playing a game, taking turns throwing a ball at a bottle sitting on a ledge. Larry throws first. The winner is the first person to knock the bottle off the ledge. At each turn the probability that a player knocks the bottle off the ledge is , independently of what has happened before. What is the probability that Larry wins the game?
This problem is copyrighted by the American Mathematics Competitions.

Instructions for entering answers:
For questions or comments, please email markan@eudelic.com.