# Problem #1990

 1990 Jerry starts at $0$ on the real number line. He tosses a fair coin $8$ times. When he gets heads, he moves $1$ unit in the positive direction; when he gets tails, he moves $1$ unit in the negative direction. The probability that he reaches $4$ at some time during this process is $\frac{a}{b},$ where $a$ and $b$ are relatively prime positive integers. What is $a + b?$ (For example, he succeeds if his sequence of tosses is $HTHHHHHH.$) $\textbf{(A)}\ 69\qquad\textbf{(B)}\ 151\qquad\textbf{(C)}\ 257\qquad\textbf{(D)}\ 293\qquad\textbf{(E)}\ 313$ This problem is copyrighted by the American Mathematics Competitions.
Note: you aren't logged in. If you log in, we'll keep a record of which problems you've solved.

Instructions for entering answers:

• Reduce fractions to lowest terms and enter in the form 7/9.
• Numbers involving pi should be written as 7pi or 7pi/3 as appropriate.
• Square roots should be written as sqrt(3), 5sqrt(5), sqrt(3)/2, or 7sqrt(2)/3 as appropriate.
• Exponents should be entered in the form 10^10.
• If the problem is multiple choice, enter the appropriate (capital) letter.
• Enter points with parentheses, like so: (4,5)
• Complex numbers should be entered in rectangular form unless otherwise specified, like so: 3+4i. If there is no real component, enter only the imaginary component (i.e. 2i, NOT 0+2i).

For questions or comments, please email markan@eudelic.com.

## Find out how your skills stack up!

Try our new, free contest math practice test. All new, never-seen-before problems.

## AMC/AIME classes

I offer online AMC/AIME classes periodically. Join the mailing list to be informed next time they're offered.

Private coaching is also available.