# Problem #200

 200 The rectangle $ABCD^{}_{}$ below has dimensions $AB^{}_{} = 12 \sqrt{3}$ and $BC^{}_{} = 13 \sqrt{3}$. Diagonals $\overline{AC}$ and $\overline{BD}$ intersect at $P^{}_{}$. If triangle $ABP^{}_{}$ is cut out and removed, edges $\overline{AP}$ and $\overline{BP}$ are joined, and the figure is then creased along segments $\overline{CP}$ and $\overline{DP}$, we obtain a triangular pyramid, all four of whose faces are isosceles triangles. Find the volume of this pyramid. This problem is copyrighted by the American Mathematics Competitions.
Note: you aren't logged in. If you log in, we'll keep a record of which problems you've solved.

• Reduce fractions to lowest terms and enter in the form 7/9.
• Numbers involving pi should be written as 7pi or 7pi/3 as appropriate.
• Square roots should be written as sqrt(3), 5sqrt(5), sqrt(3)/2, or 7sqrt(2)/3 as appropriate.
• Exponents should be entered in the form 10^10.
• If the problem is multiple choice, enter the appropriate (capital) letter.
• Enter points with parentheses, like so: (4,5)
• Complex numbers should be entered in rectangular form unless otherwise specified, like so: 3+4i. If there is no real component, enter only the imaginary component (i.e. 2i, NOT 0+2i).

## Find out how your skills stack up!

Try our new, free contest math practice test. All new, never-seen-before problems.

## AMC/AIME classes

I offer online AMC/AIME classes periodically. Join the mailing list to be informed next time they're offered.

Private coaching is also available.