# Problem #2054

 2054 There are 5 yellow pegs, 4 red pegs, 3 green pegs, 2 blue pegs, and 1 orange peg to be placed on a triangular peg board. In how many ways can the pegs be placed so that no (horizontal) row or (vertical) column contains two pegs of the same color? $[asy] unitsize(20); dot((0,0)); dot((1,0)); dot((2,0)); dot((3,0)); dot((4,0)); dot((0,1)); dot((1,1)); dot((2,1)); dot((3,1)); dot((0,2)); dot((1,2)); dot((2,2)); dot((0,3)); dot((1,3)); dot((0,4)); [/asy]$ $\mathrm{(A)}\ 0 \qquad\mathrm{(B)}\ 1 \qquad\mathrm{(C)}\ 5!\cdot 4!\cdot 3!\cdot 2!\cdot 1! \qquad\mathrm{(D)}\ \frac{15!}{5!\cdot 4!\cdot 3!\cdot 2!\cdot 1!} \qquad\mathrm{(E)}\ 15!$ This problem is copyrighted by the American Mathematics Competitions.
Note: you aren't logged in. If you log in, we'll keep a record of which problems you've solved.

• Reduce fractions to lowest terms and enter in the form 7/9.
• Numbers involving pi should be written as 7pi or 7pi/3 as appropriate.
• Square roots should be written as sqrt(3), 5sqrt(5), sqrt(3)/2, or 7sqrt(2)/3 as appropriate.
• Exponents should be entered in the form 10^10.
• If the problem is multiple choice, enter the appropriate (capital) letter.
• Enter points with parentheses, like so: (4,5)
• Complex numbers should be entered in rectangular form unless otherwise specified, like so: 3+4i. If there is no real component, enter only the imaginary component (i.e. 2i, NOT 0+2i).