Problem #2055


The diagram shows $28$ lattice points, each one unit from its nearest neighbors. Segment $AB$ meets segment $CD$ at $E$. Find the length of segment $AE$.

[asy] path seg1, seg2; seg1=(6,0)--(0,3); seg2=(2,0)--(4,2); dot((0,0)); dot((1,0)); fill(circle((2,0),0.1),black); dot((3,0)); dot((4,0)); dot((5,0)); fill(circle((6,0),0.1),black); dot((0,1)); dot((1,1)); dot((2,1)); dot((3,1)); dot((4,1)); dot((5,1)); dot((6,1)); dot((0,2)); dot((1,2)); dot((2,2)); dot((3,2)); fill(circle((4,2),0.1),black); dot((5,2)); dot((6,2)); fill(circle((0,3),0.1),black); dot((1,3)); dot((2,3)); dot((3,3)); dot((4,3)); dot((5,3)); dot((6,3)); draw(seg1); draw(seg2); pair [] x=intersectionpoints(seg1,seg2); fill(circle(x[0],0.1),black); label("$A$",(0,3),NW); label("$B$",(6,0),SE); label("$C$",(4,2),NE); label("$D$",(2,0),S); label("$E$",x[0],N); [/asy]

$\mathrm{(A)}\ \frac{4\sqrt{5}}{3} \qquad\mathrm{(B)}\ \frac{5\sqrt{5}}{3} \qquad\mathrm{(C)}\ \frac{12\sqrt{5}}{7} \qquad\mathrm{(D)}\ 2\sqrt{5} \qquad\mathrm{(E)}\ \frac{5\sqrt{65}}{9}$

This problem is copyrighted by the American Mathematics Competitions.

Note: you aren't logged in. If you log in, we'll keep a record of which problems you've solved.

Instructions for entering answers:

  • Reduce fractions to lowest terms and enter in the form 7/9.
  • Numbers involving pi should be written as 7pi or 7pi/3 as appropriate.
  • Square roots should be written as sqrt(3), 5sqrt(5), sqrt(3)/2, or 7sqrt(2)/3 as appropriate.
  • Exponents should be entered in the form 10^10.
  • If the problem is multiple choice, enter the appropriate (capital) letter.
  • Enter points with parentheses, like so: (4,5)
  • Complex numbers should be entered in rectangular form unless otherwise specified, like so: 3+4i. If there is no real component, enter only the imaginary component (i.e. 2i, NOT 0+2i).

For questions or comments, please email

Find out how your skills stack up!

Try our new, free contest math practice test. All new, never-seen-before problems.

AMC/AIME classes

I offer online AMC/AIME classes periodically. Join the mailing list to be informed next time they're offered.

Private coaching is also available.