Problem #2085

2085.

A semicircle of diameter $1$ sits at the top of a semicircle of diameter $2$, as shown. The shaded area inside the smaller semicircle and outside the larger semicircle is called a lune. Determine the area of this lune.

2003amc10a19.gif

$\mathrm{(A) \ } \frac{1}{6}\pi-\frac{\sqrt{3}}{4}\qquad \mathrm{(B) \ } \frac{\sqrt{3}}{4}-\frac{1}{12}\pi\qquad \mathrm{(C) \ } \frac{\sqrt{3}}{4}-\frac{1}{24}\pi\qquad \mathrm{(D) \ } \frac{\sqrt{3}}{4}+\frac{1}{24}\pi\qquad \mathrm{(E) \ } \frac{\sqrt{3}}{4}+\frac{1}{12}\pi$

This problem is copyrighted by the American Mathematics Competitions.

Note: you aren't logged in. If you log in, we'll keep a record of which problems you've solved.

Instructions for entering answers:

  • Reduce fractions to lowest terms and enter in the form 7/9.
  • Numbers involving pi should be written as 7pi or 7pi/3 as appropriate.
  • Square roots should be written as sqrt(3), 5sqrt(5), sqrt(3)/2, or 7sqrt(2)/3 as appropriate.
  • Exponents should be entered in the form 10^10.
  • If the problem is multiple choice, enter the appropriate (capital) letter.
  • Enter points with parentheses, like so: (4,5)
  • Complex numbers should be entered in rectangular form unless otherwise specified, like so: 3+4i. If there is no real component, enter only the imaginary component (i.e. 2i, NOT 0+2i).

For questions or comments, please email markan@eudelic.com.

Registration open for AMC10/12 prep class

Registration is now open. See details here.