# Problem #2108

 2108 Let $A = (0,9)$ and $B = (0,12)$. Points $A'$ and $B'$ are on the line $y = x$, and $\overline{AA'}$ and $\overline{BB'}$ intersect at $C = (2,8)$. What is the length of $\overline{A'B'}$? $\text {(A)} 2 \qquad \text {(B)} 2\sqrt2 \qquad \text {(C)} 3 \qquad \text {(D)} 2 + \sqrt 2\qquad \text {(E)}3\sqrt 2$ This problem is copyrighted by the American Mathematics Competitions.
Note: you aren't logged in. If you log in, we'll keep a record of which problems you've solved.

• Reduce fractions to lowest terms and enter in the form 7/9.
• Numbers involving pi should be written as 7pi or 7pi/3 as appropriate.
• Square roots should be written as sqrt(3), 5sqrt(5), sqrt(3)/2, or 7sqrt(2)/3 as appropriate.
• Exponents should be entered in the form 10^10.
• If the problem is multiple choice, enter the appropriate (capital) letter.
• Enter points with parentheses, like so: (4,5)
• Complex numbers should be entered in rectangular form unless otherwise specified, like so: 3+4i. If there is no real component, enter only the imaginary component (i.e. 2i, NOT 0+2i).