# Problem #2112

 2112 The set of all real numbers $x$ for which $$\log_{2004}(\log_{2003}(\log_{2002}(\log_{2001}{x})))$$ is defined is $\{x|x > c\}$. What is the value of $c$? $\text {(A)} 0\qquad \text {(B)}2001^{2002} \qquad \text {(C)}2002^{2003} \qquad \text {(D)}2003^{2004} \qquad \text {(E)}2001^{2002^{2003}}$ This problem is copyrighted by the American Mathematics Competitions.
Note: you aren't logged in. If you log in, we'll keep a record of which problems you've solved.

• Reduce fractions to lowest terms and enter in the form 7/9.
• Numbers involving pi should be written as 7pi or 7pi/3 as appropriate.
• Square roots should be written as sqrt(3), 5sqrt(5), sqrt(3)/2, or 7sqrt(2)/3 as appropriate.
• Exponents should be entered in the form 10^10.
• If the problem is multiple choice, enter the appropriate (capital) letter.
• Enter points with parentheses, like so: (4,5)
• Complex numbers should be entered in rectangular form unless otherwise specified, like so: 3+4i. If there is no real component, enter only the imaginary component (i.e. 2i, NOT 0+2i).