Problem #2119


A polynomial

\[P(x) = c_{2004}x^{2004} + c_{2003}x^{2003} + ... + c_1x + c_0\]

has real coefficients with $c_{2004}\not = 0$ and $2004$ distinct complex zeroes $z_k = a_k + b_ki$, $1\leq k\leq 2004$ with $a_k$ and $b_k$ real, $a_1 = b_1 = 0$, and

\[\sum_{k = 1}^{2004}{a_k} = \sum_{k = 1}^{2004}{b_k}.\]

Which of the following quantities can be a nonzero number?

$\text {(A)} c_0 \qquad \text {(B)} c_{2003} \qquad \text {(C)} b_2b_3...b_{2004} \qquad \text {(D)} \sum_{k = 1}^{2004}{a_k} \qquad \text {(E)}\sum_{k = 1}^{2004}{c_k}$

This problem is copyrighted by the American Mathematics Competitions.

Note: you aren't logged in. If you log in, we'll keep a record of which problems you've solved.

Instructions for entering answers:

  • Reduce fractions to lowest terms and enter in the form 7/9.
  • Numbers involving pi should be written as 7pi or 7pi/3 as appropriate.
  • Square roots should be written as sqrt(3), 5sqrt(5), sqrt(3)/2, or 7sqrt(2)/3 as appropriate.
  • Exponents should be entered in the form 10^10.
  • If the problem is multiple choice, enter the appropriate (capital) letter.
  • Enter points with parentheses, like so: (4,5)
  • Complex numbers should be entered in rectangular form unless otherwise specified, like so: 3+4i. If there is no real component, enter only the imaginary component (i.e. 2i, NOT 0+2i).

For questions or comments, please email

Find out how your skills stack up!

Try our new, free contest math practice test. All new, never-seen-before problems.

AMC/AIME classes

I offer online AMC/AIME classes periodically. Join the mailing list to be informed next time they're offered.

Private coaching is also available.