Problem #2122


An annulus is the region between two concentric circles. The concentric circles in the figure have radii $b$ and $c$, with $b>c$. Let $OX$ be a radius of the larger circle, let $XZ$ be tangent to the smaller circle at $Z$, and let $OY$ be the radius of the larger circle that contains $Z$. Let $a=XZ$, $d=YZ$, and $e=XY$. What is the area of the annulus?

[asy] import graph; unitsize(1.5cm); defaultpen(0.8); real r1=1.5, r2=2.5; pair O=(0,0); path inner=Circle(O,r1), outer=Circle(O,r2); pair Y=(0,r2), Z=(0,r1), X=intersectionpoint( Z--(Z+(10,0)), outer ); filldraw(outer,lightgray,black); filldraw(inner,white,black); draw(X--O--Y); draw(Y--X--Z); label("$O$",O,SW); label("$X$",X,E); label("$Y$",Y,N); label("$Z$",Z,SW); label("$a$",X--Z,N); label("$b$",0.25*X,SE); label("$c$",O--Z,E); label("$d$",Y--Z,W); label("$e$",Y*0.65 + X*0.35,SW); defaultpen(0.5); dot(O); dot(X); dot(Z); dot(Y); [/asy]

$\mathrm{(A) \ } \pi a^2 \qquad \mathrm{(B) \ } \pi b^2 \qquad \mathrm{(C) \ } \pi c^2 \qquad \mathrm{(D) \ } \pi d^2 \qquad \mathrm{(E) \ } \pi e^2$

This problem is copyrighted by the American Mathematics Competitions.

Note: you aren't logged in. If you log in, we'll keep a record of which problems you've solved.

Instructions for entering answers:

  • Reduce fractions to lowest terms and enter in the form 7/9.
  • Numbers involving pi should be written as 7pi or 7pi/3 as appropriate.
  • Square roots should be written as sqrt(3), 5sqrt(5), sqrt(3)/2, or 7sqrt(2)/3 as appropriate.
  • Exponents should be entered in the form 10^10.
  • If the problem is multiple choice, enter the appropriate (capital) letter.
  • Enter points with parentheses, like so: (4,5)
  • Complex numbers should be entered in rectangular form unless otherwise specified, like so: 3+4i. If there is no real component, enter only the imaginary component (i.e. 2i, NOT 0+2i).

For questions or comments, please email

Find out how your skills stack up!

Try our new, free contest math practice test. All new, never-seen-before problems.

AMC/AIME classes

I offer online AMC/AIME classes periodically. Join the mailing list to be informed next time they're offered.

Private coaching is also available.