Problem #2149


Let $S$ be the set of ordered triples $(x,y,z)$ of real numbers for which

\[\log_{10}(x+y) = z \text{ and } \log_{10}(x^{2}+y^{2}) = z+1.\] There are real numbers $a$ and $b$ such that for all ordered triples $(x,y,z)$ in $S$ we have $x^{3}+y^{3}=a \cdot 10^{3z} + b \cdot 10^{2z}.$ What is the value of $a+b?$

$\textbf{(A)}\ \frac {15}{2} \qquad  \textbf{(B)}\ \frac {29}{2} \qquad  \textbf{(C)}\ 15 \qquad  \textbf{(D)}\ \frac {39}{2} \qquad  \textbf{(E)}\ 24$

This problem is copyrighted by the American Mathematics Competitions.

Note: you aren't logged in. If you log in, we'll keep a record of which problems you've solved.

Instructions for entering answers:

  • Reduce fractions to lowest terms and enter in the form 7/9.
  • Numbers involving pi should be written as 7pi or 7pi/3 as appropriate.
  • Square roots should be written as sqrt(3), 5sqrt(5), sqrt(3)/2, or 7sqrt(2)/3 as appropriate.
  • Exponents should be entered in the form 10^10.
  • If the problem is multiple choice, enter the appropriate (capital) letter.
  • Enter points with parentheses, like so: (4,5)
  • Complex numbers should be entered in rectangular form unless otherwise specified, like so: 3+4i. If there is no real component, enter only the imaginary component (i.e. 2i, NOT 0+2i).

For questions or comments, please email

Find out how your skills stack up!

Try our new, free contest math practice test. All new, never-seen-before problems.

AMC/AIME classes

I offer online AMC/AIME classes periodically. Join the mailing list to be informed next time they're offered.

Private coaching is also available.