# Problem #2171

 2171 Circles with centers $O$ and $P$ have radii 2 and 4, respectively, and are externally tangent. Points $A$ and $B$ are on the circle centered at $O$, and points $C$ and $D$ are on the circle centered at $P$, such that $\overline{AD}$ and $\overline{BC}$ are common external tangents to the circles. What is the area of hexagon $AOBCPD$? $[asy] unitsize(0.4 cm); defaultpen(linewidth(0.7) + fontsize(11)); pair A, B, C, D; pair[] O; O[1] = (6,0); O[2] = (12,0); A = (32/6,8*sqrt(2)/6); B = (32/6,-8*sqrt(2)/6); C = 2*B; D = 2*A; draw(Circle(O[1],2)); draw(Circle(O[2],4)); draw((0.7*A)--(1.2*D)); draw((0.7*B)--(1.2*C)); draw(O[1]--O[2]); draw(A--O[1]); draw(B--O[1]); draw(C--O[2]); draw(D--O[2]); label("A", A, NW); label("B", B, SW); label("C", C, SW); label("D", D, NW); dot("O", O[1], SE); dot("P", O[2], SE); label("2", (A + O[1])/2, E); label("4", (D + O[2])/2, E);[/asy]$ $\textbf{(A) } 18\sqrt {3} \qquad \textbf{(B) } 24\sqrt {2} \qquad \textbf{(C) } 36 \qquad \textbf{(D) } 24\sqrt {3} \qquad \textbf{(E) } 32\sqrt {2}$ This problem is copyrighted by the American Mathematics Competitions.
Note: you aren't logged in. If you log in, we'll keep a record of which problems you've solved.

• Reduce fractions to lowest terms and enter in the form 7/9.
• Numbers involving pi should be written as 7pi or 7pi/3 as appropriate.
• Square roots should be written as sqrt(3), 5sqrt(5), sqrt(3)/2, or 7sqrt(2)/3 as appropriate.
• Exponents should be entered in the form 10^10.
• If the problem is multiple choice, enter the appropriate (capital) letter.
• Enter points with parentheses, like so: (4,5)
• Complex numbers should be entered in rectangular form unless otherwise specified, like so: 3+4i. If there is no real component, enter only the imaginary component (i.e. 2i, NOT 0+2i).