# Problem #2179

 2179 Circles with centers $A$ and $B$ have radii $3$ and $8$, respectively. A common internal tangent intersects the circles at $C$ and $D$, respectively. Lines $AB$ and $CD$ intersect at $E$, and $AE=5$. What is $CD$? $\mathrm{(A)}\ 13\qquad\mathrm{(B)}\ \frac{44}{3}\qquad\mathrm{(C)}\ \sqrt{221}\qquad\mathrm{(D)}\ \sqrt{255}\qquad\mathrm{(E)}\ \frac{55}{3}$ This problem is copyrighted by the American Mathematics Competitions.
Note: you aren't logged in. If you log in, we'll keep a record of which problems you've solved.

• Reduce fractions to lowest terms and enter in the form 7/9.
• Numbers involving pi should be written as 7pi or 7pi/3 as appropriate.
• Square roots should be written as sqrt(3), 5sqrt(5), sqrt(3)/2, or 7sqrt(2)/3 as appropriate.
• Exponents should be entered in the form 10^10.
• If the problem is multiple choice, enter the appropriate (capital) letter.
• Enter points with parentheses, like so: (4,5)
• Complex numbers should be entered in rectangular form unless otherwise specified, like so: 3+4i. If there is no real component, enter only the imaginary component (i.e. 2i, NOT 0+2i).