Problem #2348

 2348 In $\triangle ABC$ shown in the figure, $AB=7$, $BC=8$, $CA=9$, and $\overline{AH}$ is an altitude. Points $D$ and $E$ lie on sides $\overline{AC}$ and $\overline{AB}$, respectively, so that $\overline{BD}$ and $\overline{CE}$ are angle bisectors, intersecting $\overline{AH}$ at $Q$ and $P$, respectively. What is $PQ$? $[asy] import graph; size(9cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -4.381056062031275, xmax = 15.020004395092375, ymin = -4.051697595316909, ymax = 10.663513514111651; /* image dimensions */ draw((0.,0.)--(4.714285714285714,7.666518779999279)--(7.,0.)--cycle); /* draw figures */ draw((0.,0.)--(4.714285714285714,7.666518779999279)); draw((4.714285714285714,7.666518779999279)--(7.,0.)); draw((7.,0.)--(0.,0.)); label("7",(3.2916797119724284,-0.07831656949355523),SE*labelscalefactor); label("9",(2.0037562070503783,4.196493361737088),SE*labelscalefactor); label("8",(6.114150371695219,3.785453945272603),SE*labelscalefactor); draw((0.,0.)--(6.428571428571427,1.9166296949998194)); draw((7.,0.)--(2.2,3.5777087639996634)); draw((4.714285714285714,7.666518779999279)--(3.7058823529411766,0.)); /* dots and labels */ dot((0.,0.),dotstyle); label("A", (-0.2432592696221352,-0.5715638692509372), NE * labelscalefactor); dot((7.,0.),dotstyle); label("B", (7.0458397156813835,-0.48935598595804014), NE * labelscalefactor); dot((3.7058823529411766,0.),dotstyle); label("E", (3.8123296394941084,0.16830708038513573), NE * labelscalefactor); dot((4.714285714285714,7.666518779999279),dotstyle); label("C", (4.579603216894479,7.895848109917452), NE * labelscalefactor); dot((2.2,3.5777087639996634),linewidth(3.pt) + dotstyle); label("D", (2.1407693458718726,3.127790878929427), NE * labelscalefactor); dot((6.428571428571427,1.9166296949998194),linewidth(3.pt) + dotstyle); label("H", (6.004539860638023,1.9494778850645704), NE * labelscalefactor); dot((5.,1.49071198499986),linewidth(3.pt) + dotstyle); label("Q", (4.935837377830365,1.7302568629501784), NE * labelscalefactor); dot((3.857142857142857,1.1499778169998918),linewidth(3.pt) + dotstyle); label("P", (3.538303361851119,1.2370095631927964), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */ [/asy]$ $\textbf{(A)}\ 1 \qquad \textbf{(B)}\ \frac{5}{8}\sqrt{3} \qquad \textbf{(C)}\ \frac{4}{5}\sqrt{2} \qquad \textbf{(D)}\ \frac{8}{15}\sqrt{5} \qquad \textbf{(E)}\ \frac{6}{5}$ This problem is copyrighted by the American Mathematics Competitions.
Note: you aren't logged in. If you log in, we'll keep a record of which problems you've solved.

Instructions for entering answers:

• Reduce fractions to lowest terms and enter in the form 7/9.
• Numbers involving pi should be written as 7pi or 7pi/3 as appropriate.
• Square roots should be written as sqrt(3), 5sqrt(5), sqrt(3)/2, or 7sqrt(2)/3 as appropriate.
• Exponents should be entered in the form 10^10.
• If the problem is multiple choice, enter the appropriate (capital) letter.
• Enter points with parentheses, like so: (4,5)
• Complex numbers should be entered in rectangular form unless otherwise specified, like so: 3+4i. If there is no real component, enter only the imaginary component (i.e. 2i, NOT 0+2i).

For questions or comments, please email markan@eudelic.com.

Find out how your skills stack up!

Try our new, free contest math practice test. All new, never-seen-before problems.

AMC/AIME classes

I offer online AMC/AIME classes periodically. Join the mailing list to be informed next time they're offered.

Private coaching is also available.