Problem #455

Back to Complex Numbers page



$P(x) = 24x^{24} + \sum_{j = 1}^{23}(24 - j)(x^{24 - j} + x^{24 + j}).$

Let $z_{1},z_{2},\ldots,z_{r}$ be the distinct zeros of $P(x),$ and let $z_{k}^{2} = a_{k} + b_{k}i$ for $k = 1,2,\ldots,r,$ where $i = \sqrt { - 1},$ and $a_{k}$ and $b_{k}$ are real numbers. Let

$\sum_{k = 1}^{r}|b_{k}| = m + n\sqrt {p},$

where $m,$ $n,$ and $p$ are integers and $p$ is not divisible by the square of any prime. Find $m + n + p.$

This problem is copyrighted by the American Mathematics Competitions.

Note: you aren't logged in. If you log in, we'll keep a record of which problems you've solved.

Instructions for entering answers:

  • Reduce fractions to lowest terms and enter in the form 7/9.
  • Numbers involving pi should be written as 7pi or 7pi/3 as appropriate.
  • Square roots should be written as sqrt(3), 5sqrt(5), sqrt(3)/2, or 7sqrt(2)/3 as appropriate.
  • Exponents should be entered in the form 10^10.
  • If the problem is multiple choice, enter the appropriate (capital) letter.
  • Enter points with parentheses, like so: (4,5)
  • Complex numbers should be entered in rectangular form unless otherwise specified, like so: 3+4i. If there is no real component, enter only the imaginary component (i.e. 2i, NOT 0+2i).

For questions or comments, please email

Find out how your skills stack up!

Try our new, free contest math practice test. All new, never-seen-before problems.

AMC/AIME classes

I offer online AMC/AIME classes periodically. Join the mailing list to be informed next time they're offered.

Private coaching is also available.