Problem #822

Back to Complex Numbers page

822.

For integers $a$ and $b$ consider the complex number \[\frac{\sqrt{ab+2016}}{ab+100}-\left(\frac{\sqrt{|a+b|}}{ab+100}\right)i.\] Find the number of ordered pairs of integers $(a,b)$ such that this complex number is a real number.

This problem is copyrighted by the American Mathematics Competitions.

Note: you aren't logged in. If you log in, we'll keep a record of which problems you've solved.

Instructions for entering answers:

  • Reduce fractions to lowest terms and enter in the form 7/9.
  • Numbers involving pi should be written as 7pi or 7pi/3 as appropriate.
  • Square roots should be written as sqrt(3), 5sqrt(5), sqrt(3)/2, or 7sqrt(2)/3 as appropriate.
  • Exponents should be entered in the form 10^10.
  • If the problem is multiple choice, enter the appropriate (capital) letter.
  • Enter points with parentheses, like so: (4,5)
  • Complex numbers should be entered in rectangular form unless otherwise specified, like so: 3+4i. If there is no real component, enter only the imaginary component (i.e. 2i, NOT 0+2i).

For questions or comments, please email markan@eudelic.com.

Registration open for 2018 AIME prep class

Registration is now open. See details here.

$25 discount if you register by December 28!