Problem #875

 875 Professor Gamble buys a lottery ticket, which requires that he pick six different integers from $1$ through $46$, inclusive. He chooses his numbers so that the sum of the base-ten logarithms of his six numbers is an integer. It so happens that the integers on the winning ticket have the same propertyâ€” the sum of the base-ten logarithms is an integer. What is the probability that Professor Gamble holds the winning ticket? $\textbf {(A)}\ 1/5 \qquad \textbf {(B)}\ 1/4 \qquad \textbf {(C)}\ 1/3 \qquad \textbf {(D)}\ 1/2 \qquad \textbf {(E)}\ 1$ This problem is copyrighted by the American Mathematics Competitions.
Note: you aren't logged in. If you log in, we'll keep a record of which problems you've solved.

• Reduce fractions to lowest terms and enter in the form 7/9.
• Numbers involving pi should be written as 7pi or 7pi/3 as appropriate.
• Square roots should be written as sqrt(3), 5sqrt(5), sqrt(3)/2, or 7sqrt(2)/3 as appropriate.
• Exponents should be entered in the form 10^10.
• If the problem is multiple choice, enter the appropriate (capital) letter.
• Enter points with parentheses, like so: (4,5)
• Complex numbers should be entered in rectangular form unless otherwise specified, like so: 3+4i. If there is no real component, enter only the imaginary component (i.e. 2i, NOT 0+2i).