# Problem #909

 909 A polynomial of degree four with leading coefficient 1 and integer coefficients has two zeros, both of which are integers. Which of the following can also be a zero of the polynomial? $\text{(A) }\frac {1 + i \sqrt {11}}{2} \qquad \text{(B) }\frac {1 + i}{2} \qquad \text{(C) }\frac {1}{2} + i \qquad \text{(D) }1 + \frac {i}{2} \qquad \text{(E) }\frac {1 + i \sqrt {13}}{2}$ This problem is copyrighted by the American Mathematics Competitions.
Note: you aren't logged in. If you log in, we'll keep a record of which problems you've solved.

Instructions for entering answers:

• Reduce fractions to lowest terms and enter in the form 7/9.
• Numbers involving pi should be written as 7pi or 7pi/3 as appropriate.
• Square roots should be written as sqrt(3), 5sqrt(5), sqrt(3)/2, or 7sqrt(2)/3 as appropriate.
• Exponents should be entered in the form 10^10.
• If the problem is multiple choice, enter the appropriate (capital) letter.
• Enter points with parentheses, like so: (4,5)
• Complex numbers should be entered in rectangular form unless otherwise specified, like so: 3+4i. If there is no real component, enter only the imaginary component (i.e. 2i, NOT 0+2i).

For questions or comments, please email markan@eudelic.com.

## Find out how your skills stack up!

Try our new, free contest math practice test. All new, never-seen-before problems.

## AMC/AIME classes

I offer online AMC/AIME classes periodically. Join the mailing list to be informed next time they're offered.

Private coaching is also available.